MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rint0 Unicode version

Theorem rint0 4327
Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rint0

Proof of Theorem rint0
StepHypRef Expression
1 inteq 4289 . . 3
21ineq2d 3699 . 2
3 int0 4300 . . . 4
43ineq2i 3696 . . 3
5 inv1 3812 . . 3
64, 5eqtri 2486 . 2
72, 6syl6eq 2514 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395   cvv 3109  i^icin 3474   c0 3784  |^|cint 4286
This theorem is referenced by:  incexclem  13648  incexc  13649  mrerintcl  14994  ismred2  15000  txtube  20141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-v 3111  df-dif 3478  df-in 3482  df-ss 3489  df-nul 3785  df-int 4287
  Copyright terms: Public domain W3C validator