Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  riota1 Unicode version

Theorem riota1 6276
 Description: Property of restricted iota. Compare iota1 5570. (Contributed by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
riota1
Distinct variable group:   ,

Proof of Theorem riota1
StepHypRef Expression
1 df-reu 2814 . . 3
2 iota1 5570 . . 3
31, 2sylbi 195 . 2
4 df-riota 6257 . . 3
54eqeq1i 2464 . 2
63, 5syl6bbr 263 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  e.wcel 1818  E!weu 2282  E!wreu 2809  iotacio 5554  iota_crio 6256 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813  df-reu 2814  df-v 3111  df-sbc 3328  df-un 3480  df-sn 4030  df-pr 4032  df-uni 4250  df-iota 5556  df-riota 6257
 Copyright terms: Public domain W3C validator