![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > riota2f | Unicode version |
Description: This theorem shows a condition that allows us to represent a descriptor with a class expression . (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
riota2f.1 | |
riota2f.2 | |
riota2f.3 |
Ref | Expression |
---|---|
riota2f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riota2f.1 | . . 3 | |
2 | 1 | nfel1 2635 | . 2 |
3 | 1 | a1i 11 | . 2 |
4 | riota2f.2 | . . 3 | |
5 | 4 | a1i 11 | . 2 |
6 | id 22 | . 2 | |
7 | riota2f.3 | . . 3 | |
8 | 7 | adantl 466 | . 2 |
9 | 2, 3, 5, 6, 8 | riota2df 6278 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 F/ wnf 1616
e. wcel 1818 F/_ wnfc 2605 E! wreu 2809
iota_ crio 6256 |
This theorem is referenced by: riota2 6280 riotaprop 6281 riotass2 6284 riotass 6285 riotaxfrd 6288 cdlemksv2 36573 cdlemkuv2 36593 cdlemk36 36639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-reu 2814 df-v 3111 df-sbc 3328 df-un 3480 df-sn 4030 df-pr 4032 df-uni 4250 df-iota 5556 df-riota 6257 |
Copyright terms: Public domain | W3C validator |