![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > riotacl2 | Unicode version |
Description: Membership law for
"the unique element in such that ."
(Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
riotacl2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 2814 | . . 3 | |
2 | iotacl 5579 | . . 3 | |
3 | 1, 2 | sylbi 195 | . 2 |
4 | df-riota 6257 | . 2 | |
5 | df-rab 2816 | . 2 | |
6 | 3, 4, 5 | 3eltr4g 2563 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
e. wcel 1818 E! weu 2282 { cab 2442
E! wreu 2809 { crab 2811 iota cio 5554
iota_ crio 6256 |
This theorem is referenced by: riotacl 6272 riotasbc 6273 riotaxfrd 6288 supub 7939 suplub 7940 ordtypelem3 7966 catlid 15080 catrid 15081 grplinv 16096 pj1id 16717 evlsval2 18189 ig1pval3 22575 coelem 22623 quotlem 22696 mircgr 24038 mirbtwn 24039 grpoidinv2 25220 grpoinv 25229 cnlnadjlem5 26990 cvmsiota 28722 cvmliftiota 28746 mpaalem 31101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-un 3480 df-sn 4030 df-pr 4032 df-uni 4250 df-iota 5556 df-riota 6257 |
Copyright terms: Public domain | W3C validator |