Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotaeqdv Unicode version

Theorem riotaeqdv 6258
 Description: Formula-building deduction rule for iota. (Contributed by NM, 15-Sep-2011.)
Hypothesis
Ref Expression
riotaeqdv.1
Assertion
Ref Expression
riotaeqdv
Distinct variable group:   ,

Proof of Theorem riotaeqdv
StepHypRef Expression
1 riotaeqdv.1 . . . . 5
21eleq2d 2527 . . . 4
32anbi1d 704 . . 3
43iotabidv 5577 . 2
5 df-riota 6257 . 2
6 df-riota 6257 . 2
74, 5, 63eqtr4g 2523 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  /\wa 369  =wceq 1395  e.wcel 1818  iotacio 5554  iota_crio 6256 This theorem is referenced by:  riotaeqbidv  6260  grpinvpropd  16113  funtransport  29681  fvtransport  29682 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813  df-uni 4250  df-iota 5556  df-riota 6257
 Copyright terms: Public domain W3C validator