![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rlim2 | Unicode version |
Description: Rewrite rlim 13318 for a mapping operation. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.) |
Ref | Expression |
---|---|
rlim2.1 | |
rlim2.2 | |
rlim2.3 |
Ref | Expression |
---|---|
rlim2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlim2.1 | . . . 4 | |
2 | eqid 2457 | . . . . 5 | |
3 | 2 | fmpt 6052 | . . . 4 |
4 | 1, 3 | sylib 196 | . . 3 |
5 | rlim2.2 | . . 3 | |
6 | eqidd 2458 | . . 3 | |
7 | 4, 5, 6 | rlim 13318 | . 2 |
8 | rlim2.3 | . . 3 | |
9 | 8 | biantrurd 508 | . 2 |
10 | nfv 1707 | . . . . . . 7 | |
11 | nfcv 2619 | . . . . . . . . 9 | |
12 | nffvmpt1 5879 | . . . . . . . . . 10 | |
13 | nfcv 2619 | . . . . . . . . . 10 | |
14 | nfcv 2619 | . . . . . . . . . 10 | |
15 | 12, 13, 14 | nfov 6322 | . . . . . . . . 9 |
16 | 11, 15 | nffv 5878 | . . . . . . . 8 |
17 | nfcv 2619 | . . . . . . . 8 | |
18 | nfcv 2619 | . . . . . . . 8 | |
19 | 16, 17, 18 | nfbr 4496 | . . . . . . 7 |
20 | 10, 19 | nfim 1920 | . . . . . 6 |
21 | nfv 1707 | . . . . . 6 | |
22 | breq2 4456 | . . . . . . 7 | |
23 | fveq2 5871 | . . . . . . . . . 10 | |
24 | 23 | oveq1d 6311 | . . . . . . . . 9 |
25 | 24 | fveq2d 5875 | . . . . . . . 8 |
26 | 25 | breq1d 4462 | . . . . . . 7 |
27 | 22, 26 | imbi12d 320 | . . . . . 6 |
28 | 20, 21, 27 | cbvral 3080 | . . . . 5 |
29 | 2 | fvmpt2 5963 | . . . . . . . . . . 11 |
30 | 29 | oveq1d 6311 | . . . . . . . . . 10 |
31 | 30 | fveq2d 5875 | . . . . . . . . 9 |
32 | 31 | breq1d 4462 | . . . . . . . 8 |
33 | 32 | imbi2d 316 | . . . . . . 7 |
34 | 33 | ralimiaa 2849 | . . . . . 6 |
35 | ralbi 2988 | . . . . . 6 | |
36 | 1, 34, 35 | 3syl 20 | . . . . 5 |
37 | 28, 36 | syl5bb 257 | . . . 4 |
38 | 37 | rexbidv 2968 | . . 3 |
39 | 38 | ralbidv 2896 | . 2 |
40 | 7, 9, 39 | 3bitr2d 281 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 e. wcel 1818 A. wral 2807
E. wrex 2808 C_ wss 3475 class class class wbr 4452
e. cmpt 4510 --> wf 5589 ` cfv 5593
(class class class)co 6296 cc 9511 cr 9512 clt 9649 cle 9650 cmin 9828 crp 11249
cabs 13067 crli 13308 |
This theorem is referenced by: rlim2lt 13320 rlim3 13321 rlim0 13331 rlimi 13336 rlimconst 13367 climrlim2 13370 rlimcn1 13411 rlimcn2 13413 chtppilim 23660 pntlem3 23794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-pm 7442 df-rlim 13312 |
Copyright terms: Public domain | W3C validator |