![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rlim3 | Unicode version |
Description: Restrict the range of the domain bound to reals greater than some . (Contributed by Mario Carneiro, 16-Sep-2014.) |
Ref | Expression |
---|---|
rlim2.1 | |
rlim2.2 | |
rlim2.3 | |
rlim3.4 |
Ref | Expression |
---|---|
rlim3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlim2.1 | . . . 4 | |
2 | rlim2.2 | . . . 4 | |
3 | rlim2.3 | . . . 4 | |
4 | 1, 2, 3 | rlim2 13319 | . . 3 |
5 | simpr 461 | . . . . . . . 8 | |
6 | rlim3.4 | . . . . . . . . 9 | |
7 | 6 | adantr 465 | . . . . . . . 8 |
8 | 5, 7 | ifcld 3984 | . . . . . . 7 |
9 | max1 11415 | . . . . . . . 8 | |
10 | 6, 9 | sylan 471 | . . . . . . 7 |
11 | elicopnf 11649 | . . . . . . . 8 | |
12 | 7, 11 | syl 16 | . . . . . . 7 |
13 | 8, 10, 12 | mpbir2and 922 | . . . . . 6 |
14 | 2, 6 | jca 532 | . . . . . . 7 |
15 | simpllr 760 | . . . . . . . . . . 11 | |
16 | simplr 755 | . . . . . . . . . . 11 | |
17 | max2 11417 | . . . . . . . . . . 11 | |
18 | 15, 16, 17 | syl2anc 661 | . . . . . . . . . 10 |
19 | 16, 15 | ifcld 3984 | . . . . . . . . . . 11 |
20 | simpll 753 | . . . . . . . . . . . 12 | |
21 | 20 | sselda 3503 | . . . . . . . . . . 11 |
22 | letr 9699 | . . . . . . . . . . 11 | |
23 | 16, 19, 21, 22 | syl3anc 1228 | . . . . . . . . . 10 |
24 | 18, 23 | mpand 675 | . . . . . . . . 9 |
25 | 24 | imim1d 75 | . . . . . . . 8 |
26 | 25 | ralimdva 2865 | . . . . . . 7 |
27 | 14, 26 | sylan 471 | . . . . . 6 |
28 | breq1 4455 | . . . . . . . . 9 | |
29 | 28 | imbi1d 317 | . . . . . . . 8 |
30 | 29 | ralbidv 2896 | . . . . . . 7 |
31 | 30 | rspcev 3210 | . . . . . 6 |
32 | 13, 27, 31 | syl6an 545 | . . . . 5 |
33 | 32 | rexlimdva 2949 | . . . 4 |
34 | 33 | ralimdv 2867 | . . 3 |
35 | 4, 34 | sylbid 215 | . 2 |
36 | pnfxr 11350 | . . . . . 6 | |
37 | icossre 11634 | . . . . . 6 | |
38 | 6, 36, 37 | sylancl 662 | . . . . 5 |
39 | ssrexv 3564 | . . . . 5 | |
40 | 38, 39 | syl 16 | . . . 4 |
41 | 40 | ralimdv 2867 | . . 3 |
42 | 1, 2, 3 | rlim2 13319 | . . 3 |
43 | 41, 42 | sylibrd 234 | . 2 |
44 | 35, 43 | impbid 191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 C_ wss 3475
if cif 3941 class class class wbr 4452
e. cmpt 4510 ` cfv 5593 (class class class)co 6296
cc 9511 cr 9512 cpnf 9646 cxr 9648
clt 9649 cle 9650 cmin 9828 crp 11249
cico 11560
cabs 13067 crli 13308 |
This theorem is referenced by: rlimresb 13388 rlimsqzlem 13471 rlimcnp 23295 signsply0 28508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-pre-lttri 9587 ax-pre-lttrn 9588 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-ico 11564 df-rlim 13312 |
Copyright terms: Public domain | W3C validator |