![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rlimcn1 | Unicode version |
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 17-Sep-2014.) |
Ref | Expression |
---|---|
rlimcn1.1 | |
rlimcn1.2 | |
rlimcn1.3 | |
rlimcn1.4 | |
rlimcn1.5 |
Ref | Expression |
---|---|
rlimcn1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimcn1.1 | . . . 4 | |
2 | 1 | ffvelrnda 6031 | . . 3 |
3 | 1 | feqmptd 5926 | . . 3 |
4 | rlimcn1.4 | . . . 4 | |
5 | 4 | feqmptd 5926 | . . 3 |
6 | fveq2 5871 | . . 3 | |
7 | 2, 3, 5, 6 | fmptco 6064 | . 2 |
8 | rlimcn1.5 | . . . . 5 | |
9 | fvex 5881 | . . . . . . . . . 10 | |
10 | 9 | a1i 11 | . . . . . . . . 9 |
11 | 10 | ralrimiva 2871 | . . . . . . . 8 |
12 | simpr 461 | . . . . . . . 8 | |
13 | rlimcn1.3 | . . . . . . . . . 10 | |
14 | 3, 13 | eqbrtrrd 4474 | . . . . . . . . 9 |
15 | 14 | ad2antrr 725 | . . . . . . . 8 |
16 | 11, 12, 15 | rlimi 13336 | . . . . . . 7 |
17 | simpll 753 | . . . . . . . . . . . . 13 | |
18 | 17, 2 | sylan 471 | . . . . . . . . . . . 12 |
19 | simplrr 762 | . . . . . . . . . . . 12 | |
20 | oveq1 6303 | . . . . . . . . . . . . . . . 16 | |
21 | 20 | fveq2d 5875 | . . . . . . . . . . . . . . 15 |
22 | 21 | breq1d 4462 | . . . . . . . . . . . . . 14 |
23 | fveq2 5871 | . . . . . . . . . . . . . . . . 17 | |
24 | 23 | oveq1d 6311 | . . . . . . . . . . . . . . . 16 |
25 | 24 | fveq2d 5875 | . . . . . . . . . . . . . . 15 |
26 | 25 | breq1d 4462 | . . . . . . . . . . . . . 14 |
27 | 22, 26 | imbi12d 320 | . . . . . . . . . . . . 13 |
28 | 27 | rspcv 3206 | . . . . . . . . . . . 12 |
29 | 18, 19, 28 | sylc 60 | . . . . . . . . . . 11 |
30 | 29 | imim2d 52 | . . . . . . . . . 10 |
31 | 30 | ralimdva 2865 | . . . . . . . . 9 |
32 | 31 | reximdv 2931 | . . . . . . . 8 |
33 | 32 | expr 615 | . . . . . . 7 |
34 | 16, 33 | mpid 41 | . . . . . 6 |
35 | 34 | rexlimdva 2949 | . . . . 5 |
36 | 8, 35 | mpd 15 | . . . 4 |
37 | 36 | ralrimiva 2871 | . . 3 |
38 | 4 | ffvelrnda 6031 | . . . . . 6 |
39 | 2, 38 | syldan 470 | . . . . 5 |
40 | 39 | ralrimiva 2871 | . . . 4 |
41 | fdm 5740 | . . . . . 6 | |
42 | 1, 41 | syl 16 | . . . . 5 |
43 | rlimss 13325 | . . . . . 6 | |
44 | 13, 43 | syl 16 | . . . . 5 |
45 | 42, 44 | eqsstr3d 3538 | . . . 4 |
46 | rlimcn1.2 | . . . . 5 | |
47 | 4, 46 | ffvelrnd 6032 | . . . 4 |
48 | 40, 45, 47 | rlim2 13319 | . . 3 |
49 | 37, 48 | mpbird 232 | . 2 |
50 | 7, 49 | eqbrtrd 4472 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
E. wrex 2808 cvv 3109
C_ wss 3475 class class class wbr 4452
e. cmpt 4510 dom cdm 5004 o. ccom 5008
--> wf 5589 ` cfv 5593 (class class class)co 6296
cc 9511 cr 9512 clt 9649 cle 9650 cmin 9828 crp 11249
cabs 13067 crli 13308 |
This theorem is referenced by: rlimcn1b 13412 rlimdiv 13468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-pm 7442 df-rlim 13312 |
Copyright terms: Public domain | W3C validator |