MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmobii Unicode version

Theorem rmobii 3049
Description: Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmobii.1
Assertion
Ref Expression
rmobii

Proof of Theorem rmobii
StepHypRef Expression
1 rmobii.1 . . 3
21a1i 11 . 2
32rmobiia 3048 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  e.wcel 1818  E*wrmo 2810
This theorem is referenced by:  reuxfr2d  4675  brdom7disj  8930  reuxfr3d  27388  cvmlift2lem13  28760  2reu5a  32182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-eu 2286  df-mo 2287  df-rmo 2815
  Copyright terms: Public domain W3C validator