![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rmobii | Unicode version |
Description: Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
rmobii.1 |
Ref | Expression |
---|---|
rmobii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmobii.1 | . . 3 | |
2 | 1 | a1i 11 | . 2 |
3 | 2 | rmobiia 3048 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 e. wcel 1818
E* wrmo 2810 |
This theorem is referenced by: reuxfr2d 4675 brdom7disj 8930 reuxfr3d 27388 cvmlift2lem13 28760 2reu5a 32182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-eu 2286 df-mo 2287 df-rmo 2815 |
Copyright terms: Public domain | W3C validator |