![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rntpos | Unicode version |
Description: The range of when is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
rntpos |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3112 | . . . . 5 | |
2 | 1 | elrn 5248 | . . . 4 |
3 | vex 3112 | . . . . . . . . 9 | |
4 | 3, 1 | breldm 5212 | . . . . . . . 8 |
5 | dmtpos 6986 | . . . . . . . . 9 | |
6 | 5 | eleq2d 2527 | . . . . . . . 8 |
7 | 4, 6 | syl5ib 219 | . . . . . . 7 |
8 | relcnv 5379 | . . . . . . . 8 | |
9 | elrel 5110 | . . . . . . . 8 | |
10 | 8, 9 | mpan 670 | . . . . . . 7 |
11 | 7, 10 | syl6 33 | . . . . . 6 |
12 | breq1 4455 | . . . . . . . . 9 | |
13 | brtpos 6983 | . . . . . . . . . 10 | |
14 | 1, 13 | ax-mp 5 | . . . . . . . . 9 |
15 | 12, 14 | syl6bb 261 | . . . . . . . 8 |
16 | opex 4716 | . . . . . . . . 9 | |
17 | 16, 1 | brelrn 5238 | . . . . . . . 8 |
18 | 15, 17 | syl6bi 228 | . . . . . . 7 |
19 | 18 | exlimivv 1723 | . . . . . 6 |
20 | 11, 19 | syli 37 | . . . . 5 |
21 | 20 | exlimdv 1724 | . . . 4 |
22 | 2, 21 | syl5bi 217 | . . 3 |
23 | 1 | elrn 5248 | . . . 4 |
24 | 3, 1 | breldm 5212 | . . . . . . 7 |
25 | elrel 5110 | . . . . . . . 8 | |
26 | 25 | ex 434 | . . . . . . 7 |
27 | 24, 26 | syl5 32 | . . . . . 6 |
28 | breq1 4455 | . . . . . . . . 9 | |
29 | 28, 14 | syl6bbr 263 | . . . . . . . 8 |
30 | opex 4716 | . . . . . . . . 9 | |
31 | 30, 1 | brelrn 5238 | . . . . . . . 8 |
32 | 29, 31 | syl6bi 228 | . . . . . . 7 |
33 | 32 | exlimivv 1723 | . . . . . 6 |
34 | 27, 33 | syli 37 | . . . . 5 |
35 | 34 | exlimdv 1724 | . . . 4 |
36 | 23, 35 | syl5bi 217 | . . 3 |
37 | 22, 36 | impbid 191 | . 2 |
38 | 37 | eqrdv 2454 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 E. wex 1612 e. wcel 1818
cvv 3109
<. cop 4035 class class class wbr 4452
`' ccnv 5003 dom cdm 5004 ran crn 5005
Rel wrel 5009
tpos ctpos 6973 |
This theorem is referenced by: tposfo2 6997 oppchofcl 15529 oyoncl 15539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 df-tpos 6974 |
Copyright terms: Public domain | W3C validator |