MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnxpss Unicode version

Theorem rnxpss 5444
Description: The range of a Cartesian product is a subclass of the second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rnxpss

Proof of Theorem rnxpss
StepHypRef Expression
1 df-rn 5015 . 2
2 cnvxp 5429 . . . 4
32dmeqi 5209 . . 3
4 dmxpss 5443 . . 3
53, 4eqsstri 3533 . 2
61, 5eqsstri 3533 1
Colors of variables: wff setvar class
Syntax hints:  C_wss 3475  X.cxp 5002  `'ccnv 5003  domcdm 5004  rancrn 5005
This theorem is referenced by:  ssxpb  5446  ssrnres  5450  funssxp  5749  fconst  5776  dff2  6043  dff3  6044  fliftf  6213  marypha1lem  7913  marypha1  7914  dfac12lem2  8545  brdom4  8929  nqerf  9329  lern  15855  cnconst2  19784  lmss  19799  tsmsxplem1  20655  causs  21737  i1f0  22094  itg10  22095  taylf  22756  perpln2  24088  locfinref  27844  sitg0  28288  heicant  30049  xptrrel  37775  rp-imass  37795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-xp 5010  df-rel 5011  df-cnv 5012  df-dm 5014  df-rn 5015
  Copyright terms: Public domain W3C validator