![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rpmulgcd2 | Unicode version |
Description: If is relatively prime to , then the GCD of with is the product of the GCDs with and respectively. (Contributed by Mario Carneiro, 2-Jul-2015.) |
Ref | Expression |
---|---|
rpmulgcd2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 999 | . . 3 | |
2 | simpl2 1000 | . . . 4 | |
3 | simpl3 1001 | . . . 4 | |
4 | 2, 3 | zmulcld 11000 | . . 3 |
5 | 1, 4 | gcdcld 14156 | . 2 |
6 | 1, 2 | gcdcld 14156 | . . 3 |
7 | 1, 3 | gcdcld 14156 | . . 3 |
8 | 6, 7 | nn0mulcld 10882 | . 2 |
9 | mulgcddvds 14245 | . . 3 | |
10 | 9 | adantr 465 | . 2 |
11 | gcddvds 14153 | . . . . . 6 | |
12 | 1, 2, 11 | syl2anc 661 | . . . . 5 |
13 | 12 | simpld 459 | . . . 4 |
14 | gcddvds 14153 | . . . . . 6 | |
15 | 1, 3, 14 | syl2anc 661 | . . . . 5 |
16 | 15 | simpld 459 | . . . 4 |
17 | 6 | nn0zd 10992 | . . . . 5 |
18 | 7 | nn0zd 10992 | . . . . 5 |
19 | gcddvds 14153 | . . . . . . . . . . 11 | |
20 | 17, 18, 19 | syl2anc 661 | . . . . . . . . . 10 |
21 | 20 | simpld 459 | . . . . . . . . 9 |
22 | 12 | simprd 463 | . . . . . . . . 9 |
23 | 17, 18 | gcdcld 14156 | . . . . . . . . . . 11 |
24 | 23 | nn0zd 10992 | . . . . . . . . . 10 |
25 | dvdstr 14018 | . . . . . . . . . 10 | |
26 | 24, 17, 2, 25 | syl3anc 1228 | . . . . . . . . 9 |
27 | 21, 22, 26 | mp2and 679 | . . . . . . . 8 |
28 | 20 | simprd 463 | . . . . . . . . 9 |
29 | 15 | simprd 463 | . . . . . . . . 9 |
30 | dvdstr 14018 | . . . . . . . . . 10 | |
31 | 24, 18, 3, 30 | syl3anc 1228 | . . . . . . . . 9 |
32 | 28, 29, 31 | mp2and 679 | . . . . . . . 8 |
33 | dvdsgcd 14181 | . . . . . . . . 9 | |
34 | 24, 2, 3, 33 | syl3anc 1228 | . . . . . . . 8 |
35 | 27, 32, 34 | mp2and 679 | . . . . . . 7 |
36 | simpr 461 | . . . . . . 7 | |
37 | 35, 36 | breqtrd 4476 | . . . . . 6 |
38 | dvds1 14034 | . . . . . . 7 | |
39 | 23, 38 | syl 16 | . . . . . 6 |
40 | 37, 39 | mpbid 210 | . . . . 5 |
41 | coprmdvds2 14244 | . . . . 5 | |
42 | 17, 18, 1, 40, 41 | syl31anc 1231 | . . . 4 |
43 | 13, 16, 42 | mp2and 679 | . . 3 |
44 | dvdscmul 14010 | . . . . . 6 | |
45 | 18, 3, 17, 44 | syl3anc 1228 | . . . . 5 |
46 | dvdsmulc 14011 | . . . . . 6 | |
47 | 17, 2, 3, 46 | syl3anc 1228 | . . . . 5 |
48 | 17, 18 | zmulcld 11000 | . . . . . 6 |
49 | 17, 3 | zmulcld 11000 | . . . . . 6 |
50 | dvdstr 14018 | . . . . . 6 | |
51 | 48, 49, 4, 50 | syl3anc 1228 | . . . . 5 |
52 | 45, 47, 51 | syl2and 483 | . . . 4 |
53 | 29, 22, 52 | mp2and 679 | . . 3 |
54 | dvdsgcd 14181 | . . . 4 | |
55 | 48, 1, 4, 54 | syl3anc 1228 | . . 3 |
56 | 43, 53, 55 | mp2and 679 | . 2 |
57 | dvdseq 14033 | . 2 | |
58 | 5, 8, 10, 56, 57 | syl22anc 1229 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 class class class wbr 4452
(class class class)co 6296 1 c1 9514
cmul 9518 cn0 10820
cz 10889 cdvds 13986 cgcd 14144 |
This theorem is referenced by: dvdsmulf1o 23470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-dvds 13987 df-gcd 14145 |
Copyright terms: Public domain | W3C validator |