![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rpnnen | Unicode version |
Description: The cardinality of the continuum is the same as the powerset of . This is a stronger statement than ruc 13976, which only asserts that is uncountable, i.e. has a cardinality larger than . The main proof is in two parts, rpnnen1 11242 and rpnnen2 13959, each showing an injection in one direction, and this last part uses sbth 7657 to prove that the sets are equinumerous. By constructing explicit injections, we avoid the use of AC. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
rpnnen |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6303 | . . . . . 6 | |
2 | 1 | breq1d 4462 | . . . . 5 |
3 | 2 | cbvrabv 3108 | . . . 4 |
4 | oveq2 6304 | . . . . . . . . . . 11 | |
5 | 4 | breq1d 4462 | . . . . . . . . . 10 |
6 | 5 | rabbidv 3101 | . . . . . . . . 9 |
7 | 6 | supeq1d 7926 | . . . . . . . 8 |
8 | id 22 | . . . . . . . 8 | |
9 | 7, 8 | oveq12d 6314 | . . . . . . 7 |
10 | 9 | cbvmptv 4543 | . . . . . 6 |
11 | breq2 4456 | . . . . . . . . . 10 | |
12 | 11 | rabbidv 3101 | . . . . . . . . 9 |
13 | 12 | supeq1d 7926 | . . . . . . . 8 |
14 | 13 | oveq1d 6311 | . . . . . . 7 |
15 | 14 | mpteq2dv 4539 | . . . . . 6 |
16 | 10, 15 | syl5eq 2510 | . . . . 5 |
17 | 16 | cbvmptv 4543 | . . . 4 |
18 | 3, 17 | rpnnen1 11242 | . . 3 |
19 | qnnen 13947 | . . . . . . 7 | |
20 | nnex 10567 | . . . . . . . 8 | |
21 | 20 | canth2 7690 | . . . . . . 7 |
22 | ensdomtr 7673 | . . . . . . 7 | |
23 | 19, 21, 22 | mp2an 672 | . . . . . 6 |
24 | sdomdom 7563 | . . . . . 6 | |
25 | mapdom1 7702 | . . . . . 6 | |
26 | 23, 24, 25 | mp2b 10 | . . . . 5 |
27 | 20 | pw2en 7644 | . . . . . 6 |
28 | 20 | enref 7568 | . . . . . 6 |
29 | mapen 7701 | . . . . . 6 | |
30 | 27, 28, 29 | mp2an 672 | . . . . 5 |
31 | domentr 7594 | . . . . 5 | |
32 | 26, 30, 31 | mp2an 672 | . . . 4 |
33 | 2onn 7308 | . . . . . . 7 | |
34 | mapxpen 7703 | . . . . . . 7 | |
35 | 33, 20, 20, 34 | mp3an 1324 | . . . . . 6 |
36 | 33 | elexi 3119 | . . . . . . . 8 |
37 | 36 | enref 7568 | . . . . . . 7 |
38 | xpnnen 13942 | . . . . . . 7 | |
39 | mapen 7701 | . . . . . . 7 | |
40 | 37, 38, 39 | mp2an 672 | . . . . . 6 |
41 | 35, 40 | entri 7589 | . . . . 5 |
42 | 41, 27 | entr4i 7592 | . . . 4 |
43 | domentr 7594 | . . . 4 | |
44 | 32, 42, 43 | mp2an 672 | . . 3 |
45 | domtr 7588 | . . 3 | |
46 | 18, 44, 45 | mp2an 672 | . 2 |
47 | elequ2 1823 | . . . . . . . 8 | |
48 | 47 | ifbid 3963 | . . . . . . 7 |
49 | 48 | mpteq2dv 4539 | . . . . . 6 |
50 | elequ1 1821 | . . . . . . . 8 | |
51 | oveq2 6304 | . . . . . . . 8 | |
52 | 50, 51 | ifbieq1d 3964 | . . . . . . 7 |
53 | 52 | cbvmptv 4543 | . . . . . 6 |
54 | 49, 53 | syl6eq 2514 | . . . . 5 |
55 | 54 | cbvmptv 4543 | . . . 4 |
56 | 55 | rpnnen2 13959 | . . 3 |
57 | reex 9604 | . . . 4 | |
58 | unitssre 11696 | . . . 4 | |
59 | ssdomg 7581 | . . . 4 | |
60 | 57, 58, 59 | mp2 9 | . . 3 |
61 | domtr 7588 | . . 3 | |
62 | 56, 60, 61 | mp2an 672 | . 2 |
63 | sbth 7657 | . 2 | |
64 | 46, 62, 63 | mp2an 672 | 1 |
Colors of variables: wff setvar class |
Syntax hints: e. wcel 1818 { crab 2811
cvv 3109
C_ wss 3475 if cif 3941 ~P cpw 4012
class class class wbr 4452 e. cmpt 4510
X. cxp 5002 (class class class)co 6296
com 6700
c2o 7143
cmap 7439
cen 7533 cdom 7534 csdm 7535 sup csup 7920 cr 9512 0 cc0 9513 1 c1 9514
clt 9649 cdiv 10231 cn 10561 3 c3 10611 cz 10889 cq 11211 cicc 11561
cexp 12166 |
This theorem is referenced by: rexpen 13961 cpnnen 13962 rucALT 13963 cnso 13980 2ndcredom 19951 opnreen 21336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-omul 7154 df-er 7330 df-map 7441 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-acn 8344 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-q 11212 df-rp 11250 df-ico 11564 df-icc 11565 df-fz 11702 df-fzo 11825 df-fl 11929 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-limsup 13294 df-clim 13311 df-rlim 13312 df-sum 13509 |
Copyright terms: Public domain | W3C validator |