![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rpnnen2 | Unicode version |
Description: The other half of rpnnen 13960, where we show an injection from sets of
positive integers to real numbers. The obvious choice for this is
binary expansion, but it has the unfortunate property that it does not
produce an injection on numbers which end with all 0's or all 1's (the
more well-known decimal version of this is 0.999... 13690). Instead, we
opt for a ternary expansion, which produces (a scaled version of) the
Cantor set. Since the Cantor set is riddled with gaps, we can show that
any two sequences that are not equal must differ somewhere, and when
they do, they are placed a finite distance apart, thus ensuring that the
map is injective.
Our map assigns to each subset of the positive integers the number
, where
Putting it all together, if we have two sets , there must
differ somewhere, and so there must be an such that
|
Ref | Expression |
---|---|
rpnnen2.1 |
Ref | Expression |
---|---|
rpnnen2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6324 | . 2 | |
2 | elpwi 4021 | . . . . 5 | |
3 | nnuz 11145 | . . . . . . 7 | |
4 | 3 | sumeq1i 13520 | . . . . . 6 |
5 | 1nn 10572 | . . . . . . 7 | |
6 | rpnnen2.1 | . . . . . . . 8 | |
7 | 6 | rpnnen2lem6 13953 | . . . . . . 7 |
8 | 5, 7 | mpan2 671 | . . . . . 6 |
9 | 4, 8 | syl5eqel 2549 | . . . . 5 |
10 | 2, 9 | syl 16 | . . . 4 |
11 | 1zzd 10920 | . . . . 5 | |
12 | eqidd 2458 | . . . . 5 | |
13 | 6 | rpnnen2lem2 13949 | . . . . . . 7 |
14 | 2, 13 | syl 16 | . . . . . 6 |
15 | 14 | ffvelrnda 6031 | . . . . 5 |
16 | 6 | rpnnen2lem5 13952 | . . . . . 6 |
17 | 2, 5, 16 | sylancl 662 | . . . . 5 |
18 | ssid 3522 | . . . . . . . 8 | |
19 | 6 | rpnnen2lem4 13951 | . . . . . . . 8 |
20 | 18, 19 | mp3an2 1312 | . . . . . . 7 |
21 | 20 | simpld 459 | . . . . . 6 |
22 | 2, 21 | sylan 471 | . . . . 5 |
23 | 3, 11, 12, 15, 17, 22 | isumge0 13581 | . . . 4 |
24 | halfre 10779 | . . . . . 6 | |
25 | 24 | a1i 11 | . . . . 5 |
26 | 1re 9616 | . . . . . 6 | |
27 | 26 | a1i 11 | . . . . 5 |
28 | 6 | rpnnen2lem7 13954 | . . . . . . . . 9 |
29 | 18, 5, 28 | mp3an23 1316 | . . . . . . . 8 |
30 | 2, 29 | syl 16 | . . . . . . 7 |
31 | eqid 2457 | . . . . . . . 8 | |
32 | eqidd 2458 | . . . . . . . 8 | |
33 | elnnuz 11146 | . . . . . . . . . 10 | |
34 | 6 | rpnnen2lem2 13949 | . . . . . . . . . . . . 13 |
35 | 18, 34 | ax-mp 5 | . . . . . . . . . . . 12 |
36 | 35 | ffvelrni 6030 | . . . . . . . . . . 11 |
37 | 36 | recnd 9643 | . . . . . . . . . 10 |
38 | 33, 37 | sylbir 213 | . . . . . . . . 9 |
39 | 38 | adantl 466 | . . . . . . . 8 |
40 | 6 | rpnnen2lem3 13950 | . . . . . . . . 9 |
41 | 40 | a1i 11 | . . . . . . . 8 |
42 | 31, 11, 32, 39, 41 | isumclim 13572 | . . . . . . 7 |
43 | 30, 42 | breqtrd 4476 | . . . . . 6 |
44 | 4, 43 | syl5eqbr 4485 | . . . . 5 |
45 | halflt1 10782 | . . . . . . 7 | |
46 | 24, 26, 45 | ltleii 9728 | . . . . . 6 |
47 | 46 | a1i 11 | . . . . 5 |
48 | 10, 25, 27, 44, 47 | letrd 9760 | . . . 4 |
49 | 0re 9617 | . . . . 5 | |
50 | 49, 26 | elicc2i 11619 | . . . 4 |
51 | 10, 23, 48, 50 | syl3anbrc 1180 | . . 3 |
52 | elpwi 4021 | . . . . . . . . . . 11 | |
53 | ssdifss 3634 | . . . . . . . . . . . 12 | |
54 | ssdifss 3634 | . . . . . . . . . . . 12 | |
55 | unss 3677 | . . . . . . . . . . . . 13 | |
56 | 55 | biimpi 194 | . . . . . . . . . . . 12 |
57 | 53, 54, 56 | syl2an 477 | . . . . . . . . . . 11 |
58 | 2, 52, 57 | syl2an 477 | . . . . . . . . . 10 |
59 | eqss 3518 | . . . . . . . . . . . . 13 | |
60 | ssdif0 3885 | . . . . . . . . . . . . . 14 | |
61 | ssdif0 3885 | . . . . . . . . . . . . . 14 | |
62 | 60, 61 | anbi12i 697 | . . . . . . . . . . . . 13 |
63 | un00 3862 | . . . . . . . . . . . . 13 | |
64 | 59, 62, 63 | 3bitri 271 | . . . . . . . . . . . 12 |
65 | 64 | necon3bii 2725 | . . . . . . . . . . 11 |
66 | 65 | biimpi 194 | . . . . . . . . . 10 |
67 | nnwo 11176 | . . . . . . . . . 10 | |
68 | 58, 66, 67 | syl2an 477 | . . . . . . . . 9 |
69 | 68 | ex 434 | . . . . . . . 8 |
70 | 58 | sselda 3503 | . . . . . . . . . 10 |
71 | df-ral 2812 | . . . . . . . . . . . 12 | |
72 | con34b 292 | . . . . . . . . . . . . . 14 | |
73 | eldif 3485 | . . . . . . . . . . . . . . . . . 18 | |
74 | eldif 3485 | . . . . . . . . . . . . . . . . . 18 | |
75 | 73, 74 | orbi12i 521 | . . . . . . . . . . . . . . . . 17 |
76 | elun 3644 | . . . . . . . . . . . . . . . . 17 | |
77 | xor 891 | . . . . . . . . . . . . . . . . 17 | |
78 | 75, 76, 77 | 3bitr4ri 278 | . . . . . . . . . . . . . . . 16 |
79 | 78 | con1bii 331 | . . . . . . . . . . . . . . 15 |
80 | 79 | imbi2i 312 | . . . . . . . . . . . . . 14 |
81 | 72, 80 | bitri 249 | . . . . . . . . . . . . 13 |
82 | 81 | albii 1640 | . . . . . . . . . . . 12 |
83 | 71, 82 | bitri 249 | . . . . . . . . . . 11 |
84 | alral 2822 | . . . . . . . . . . . 12 | |
85 | nnre 10568 | . . . . . . . . . . . . . . 15 | |
86 | nnre 10568 | . . . . . . . . . . . . . . 15 | |
87 | ltnle 9685 | . . . . . . . . . . . . . . 15 | |
88 | 85, 86, 87 | syl2anr 478 | . . . . . . . . . . . . . 14 |
89 | 88 | imbi1d 317 | . . . . . . . . . . . . 13 |
90 | 89 | ralbidva 2893 | . . . . . . . . . . . 12 |
91 | 84, 90 | syl5ibr 221 | . . . . . . . . . . 11 |
92 | 83, 91 | syl5bi 217 | . . . . . . . . . 10 |
93 | 70, 92 | syl 16 | . . . . . . . . 9 |
94 | 93 | reximdva 2932 | . . . . . . . 8 |
95 | 69, 94 | syld 44 | . . . . . . 7 |
96 | rexun 3683 | . . . . . . 7 | |
97 | 95, 96 | syl6ib 226 | . . . . . 6 |
98 | simpll 753 | . . . . . . . . . 10 | |
99 | simplr 755 | . . . . . . . . . 10 | |
100 | simprl 756 | . . . . . . . . . 10 | |
101 | simprr 757 | . . . . . . . . . 10 | |
102 | biid 236 | . . . . . . . . . 10 | |
103 | 6, 98, 99, 100, 101, 102 | rpnnen2lem11 13958 | . . . . . . . . 9 |
104 | 103 | rexlimdvaa 2950 | . . . . . . . 8 |
105 | simplr 755 | . . . . . . . . . 10 | |
106 | simpll 753 | . . . . . . . . . 10 | |
107 | simprl 756 | . . . . . . . . . 10 | |
108 | simprr 757 | . . . . . . . . . . 11 | |
109 | bicom 200 | . . . . . . . . . . . . 13 | |
110 | 109 | imbi2i 312 | . . . . . . . . . . . 12 |
111 | 110 | ralbii 2888 | . . . . . . . . . . 11 |
112 | 108, 111 | sylibr 212 | . . . . . . . . . 10 |
113 | eqcom 2466 | . . . . . . . . . 10 | |
114 | 6, 105, 106, 107, 112, 113 | rpnnen2lem11 13958 | . . . . . . . . 9 |
115 | 114 | rexlimdvaa 2950 | . . . . . . . 8 |
116 | 104, 115 | jaod 380 | . . . . . . 7 |
117 | 2, 52, 116 | syl2an 477 | . . . . . 6 |
118 | 97, 117 | syld 44 | . . . . 5 |
119 | 118 | necon4ad 2677 | . . . 4 |
120 | fveq2 5871 | . . . . . 6 | |
121 | 120 | fveq1d 5873 | . . . . 5 |
122 | 121 | sumeq2sdv 13526 | . . . 4 |
123 | 119, 122 | impbid1 203 | . . 3 |
124 | 51, 123 | dom2 7578 | . 2 |
125 | 1, 124 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
A. wal 1393 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 E. wrex 2808
cvv 3109
\ cdif 3472 u. cun 3473 C_ wss 3475
c0 3784 if cif 3941 ~P cpw 4012
class class class wbr 4452 e. cmpt 4510
dom cdm 5004 --> wf 5589 ` cfv 5593
(class class class)co 6296 cdom 7534 cc 9511 cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 clt 9649 cle 9650 cdiv 10231 cn 10561 2 c2 10610 3 c3 10611
cuz 11110
cicc 11561
seq cseq 12107
cexp 12166 cli 13307 sum_ csu 13508 |
This theorem is referenced by: rpnnen 13960 opnreen 21336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-ico 11564 df-icc 11565 df-fz 11702 df-fzo 11825 df-fl 11929 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-limsup 13294 df-clim 13311 df-rlim 13312 df-sum 13509 |
Copyright terms: Public domain | W3C validator |