![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rpnnen2lem10 | Unicode version |
Description: Lemma for rpnnen2 13959. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
rpnnen2.1 | |
rpnnen2.2 | |
rpnnen2.3 | |
rpnnen2.4 | |
rpnnen2.5 | |
rpnnen2.6 |
Ref | Expression |
---|---|
rpnnen2lem10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 461 | . . . 4 | |
2 | rpnnen2.6 | . . . 4 | |
3 | 1, 2 | sylib 196 | . . 3 |
4 | rpnnen2.2 | . . . . . 6 | |
5 | rpnnen2.4 | . . . . . . 7 | |
6 | eldifi 3625 | . . . . . . . 8 | |
7 | ssel2 3498 | . . . . . . . 8 | |
8 | 6, 7 | sylan2 474 | . . . . . . 7 |
9 | 4, 5, 8 | syl2anc 661 | . . . . . 6 |
10 | rpnnen2.1 | . . . . . . 7 | |
11 | 10 | rpnnen2lem8 13955 | . . . . . 6 |
12 | 4, 9, 11 | syl2anc 661 | . . . . 5 |
13 | 1z 10919 | . . . . . . . . . . . . . 14 | |
14 | nnz 10911 | . . . . . . . . . . . . . 14 | |
15 | elfzm11 11778 | . . . . . . . . . . . . . 14 | |
16 | 13, 14, 15 | sylancr 663 | . . . . . . . . . . . . 13 |
17 | 16 | biimpa 484 | . . . . . . . . . . . 12 |
18 | 9, 17 | sylan 471 | . . . . . . . . . . 11 |
19 | 18 | simp3d 1010 | . . . . . . . . . 10 |
20 | rpnnen2.5 | . . . . . . . . . . 11 | |
21 | elfznn 11743 | . . . . . . . . . . 11 | |
22 | breq1 4455 | . . . . . . . . . . . . 13 | |
23 | eleq1 2529 | . . . . . . . . . . . . . 14 | |
24 | eleq1 2529 | . . . . . . . . . . . . . 14 | |
25 | 23, 24 | bibi12d 321 | . . . . . . . . . . . . 13 |
26 | 22, 25 | imbi12d 320 | . . . . . . . . . . . 12 |
27 | 26 | rspccva 3209 | . . . . . . . . . . 11 |
28 | 20, 21, 27 | syl2an 477 | . . . . . . . . . 10 |
29 | 19, 28 | mpd 15 | . . . . . . . . 9 |
30 | 29 | ifbid 3963 | . . . . . . . 8 |
31 | 10 | rpnnen2lem1 13948 | . . . . . . . . 9 |
32 | 4, 21, 31 | syl2an 477 | . . . . . . . 8 |
33 | rpnnen2.3 | . . . . . . . . 9 | |
34 | 10 | rpnnen2lem1 13948 | . . . . . . . . 9 |
35 | 33, 21, 34 | syl2an 477 | . . . . . . . 8 |
36 | 30, 32, 35 | 3eqtr4d 2508 | . . . . . . 7 |
37 | 36 | sumeq2dv 13525 | . . . . . 6 |
38 | 37 | oveq1d 6311 | . . . . 5 |
39 | 12, 38 | eqtrd 2498 | . . . 4 |
40 | 39 | adantr 465 | . . 3 |
41 | 10 | rpnnen2lem8 13955 | . . . . 5 |
42 | 33, 9, 41 | syl2anc 661 | . . . 4 |
43 | 42 | adantr 465 | . . 3 |
44 | 3, 40, 43 | 3eqtr3d 2506 | . 2 |
45 | 10 | rpnnen2lem6 13953 | . . . . 5 |
46 | 4, 9, 45 | syl2anc 661 | . . . 4 |
47 | 10 | rpnnen2lem6 13953 | . . . . 5 |
48 | 33, 9, 47 | syl2anc 661 | . . . 4 |
49 | fzfid 12083 | . . . . 5 | |
50 | 10 | rpnnen2lem2 13949 | . . . . . . 7 |
51 | 33, 50 | syl 16 | . . . . . 6 |
52 | ffvelrn 6029 | . . . . . 6 | |
53 | 51, 21, 52 | syl2an 477 | . . . . 5 |
54 | 49, 53 | fsumrecl 13556 | . . . 4 |
55 | readdcan 9775 | . . . 4 | |
56 | 46, 48, 54, 55 | syl3anc 1228 | . . 3 |
57 | 56 | adantr 465 | . 2 |
58 | 44, 57 | mpbid 210 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 A. wral 2807 \ cdif 3472
C_ wss 3475 if cif 3941 ~P cpw 4012
class class class wbr 4452 e. cmpt 4510
--> wf 5589 ` cfv 5593 (class class class)co 6296
cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 clt 9649 cle 9650 cmin 9828 cdiv 10231 cn 10561 3 c3 10611 cz 10889 cuz 11110
cfz 11701 cexp 12166 sum_ csu 13508 |
This theorem is referenced by: rpnnen2lem11 13958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-ico 11564 df-fz 11702 df-fzo 11825 df-fl 11929 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-limsup 13294 df-clim 13311 df-rlim 13312 df-sum 13509 |
Copyright terms: Public domain | W3C validator |