![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rr19.28v | Unicode version |
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. We don't need the nonempty class condition of r19.28zv 3924 when there is an outer quantifier. (Contributed by NM, 29-Oct-2012.) |
Ref | Expression |
---|---|
rr19.28v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 457 | . . . . . 6 | |
2 | 1 | ralimi 2850 | . . . . 5 |
3 | biidd 237 | . . . . . 6 | |
4 | 3 | rspcv 3206 | . . . . 5 |
5 | 2, 4 | syl5 32 | . . . 4 |
6 | simpr 461 | . . . . . 6 | |
7 | 6 | ralimi 2850 | . . . . 5 |
8 | 7 | a1i 11 | . . . 4 |
9 | 5, 8 | jcad 533 | . . 3 |
10 | 9 | ralimia 2848 | . 2 |
11 | r19.28v 2991 | . . 3 | |
12 | 11 | ralimi 2850 | . 2 |
13 | 10, 12 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 e. wcel 1818 A. wral 2807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-v 3111 |
Copyright terms: Public domain | W3C validator |