Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rr19.3v Unicode version

Theorem rr19.3v 3241
 Description: Restricted quantifier version of Theorem 19.3 of [Margaris] p. 89. We don't need the nonempty class condition of r19.3rzv 3922 when there is an outer quantifier. (Contributed by NM, 25-Oct-2012.)
Assertion
Ref Expression
rr19.3v
Distinct variable groups:   ,   ,   ,

Proof of Theorem rr19.3v
StepHypRef Expression
1 biidd 237 . . . 4
21rspcv 3206 . . 3
32ralimia 2848 . 2
4 ax-1 6 . . . 4
54ralrimiv 2869 . . 3
65ralimi 2850 . 2
73, 6impbii 188 1
 Colors of variables: wff setvar class Syntax hints:  <->wb 184  e.wcel 1818  A.wral 2807 This theorem is referenced by:  ispos2  15577 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-v 3111
 Copyright terms: Public domain W3C validator