![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rspcdv | Unicode version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rspcdv.1 | |
rspcdv.2 |
Ref | Expression |
---|---|
rspcdv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcdv.1 | . 2 | |
2 | rspcdv.2 | . . 3 | |
3 | 2 | biimpd 207 | . 2 |
4 | 1, 3 | rspcimdv 3211 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 |
This theorem is referenced by: ralxfrd 4666 suppofss1d 6956 suppofss2d 6957 zindd 10990 wrd2ind 12703 ismri2dad 15034 mreexd 15039 mreexexlemd 15041 catcocl 15082 catass 15083 moni 15131 subccocl 15214 funcco 15240 fullfo 15281 fthf1 15286 nati 15324 mrcmndind 15997 idsrngd 17511 sizeusglecusglem1 24484 fargshiftfva 24639 wlkiswwlk2lem5 24695 usg2wlkeq 24708 clwlkisclwwlklem2a 24785 clwlkisclwwlklem1 24787 clwwisshclww 24807 usg2cwwk2dif 24820 eupatrl 24968 rngurd 27778 esumcvg 28092 orvcelel 28408 signsply0 28508 onint1 29914 ralbinrald 32204 ralxfrd2 32303 snlindsntorlem 33071 rspcdvinvd 37992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-v 3111 |
Copyright terms: Public domain | W3C validator |