Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcdv Unicode version

Theorem rspcdv 3213
 Description: Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcdv.1
rspcdv.2
Assertion
Ref Expression
rspcdv
Distinct variable groups:   ,   ,   ,   ,

Proof of Theorem rspcdv
StepHypRef Expression
1 rspcdv.1 . 2
2 rspcdv.2 . . 3
32biimpd 207 . 2
41, 3rspcimdv 3211 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  e.wcel 1818  A.wral 2807 This theorem is referenced by:  ralxfrd  4666  suppofss1d  6956  suppofss2d  6957  zindd  10990  wrd2ind  12703  ismri2dad  15034  mreexd  15039  mreexexlemd  15041  catcocl  15082  catass  15083  moni  15131  subccocl  15214  funcco  15240  fullfo  15281  fthf1  15286  nati  15324  mrcmndind  15997  idsrngd  17511  sizeusglecusglem1  24484  fargshiftfva  24639  wlkiswwlk2lem5  24695  usg2wlkeq  24708  clwlkisclwwlklem2a  24785  clwlkisclwwlklem1  24787  clwwisshclww  24807  usg2cwwk2dif  24820  eupatrl  24968  rngurd  27778  esumcvg  28092  orvcelel  28408  signsply0  28508  onint1  29914  ralbinrald  32204  ralxfrd2  32303  snlindsntorlem  33071  rspcdvinvd  37992 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-v 3111
 Copyright terms: Public domain W3C validator