![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rspcedv | Unicode version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rspcdv.1 | |
rspcdv.2 |
Ref | Expression |
---|---|
rspcedv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcdv.1 | . 2 | |
2 | rspcdv.2 | . . 3 | |
3 | 2 | biimprd 223 | . 2 |
4 | 1, 3 | rspcimedv 3212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
E. wrex 2808 |
This theorem is referenced by: rspcedvd 3215 fsuppmapnn0fiub 12097 0csh0 12764 gcdcllem1 14149 nn0gsumfz 17012 pmatcollpw3lem 19284 pmatcollpw3fi1lem2 19288 pm2mpfo 19315 f1otrg 24174 cusgrafilem2 24480 wwlknredwwlkn 24726 wwlkextprop 24744 numclwwlkun 25079 xrofsup 27582 rexzrexnn0 30737 lcoel0 33029 lcoss 33037 el0ldep 33067 ldepspr 33074 islindeps2 33084 isldepslvec2 33086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 |
Copyright terms: Public domain | W3C validator |