MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspesbca Unicode version

Theorem rspesbca 3419
Description: Existence form of rspsbca 3418. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
rspesbca
Distinct variable group:   ,

Proof of Theorem rspesbca
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3330 . . 3
21rspcev 3210 . 2
3 cbvrexsv 3096 . 2
42, 3sylibr 212 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  [wsb 1739  e.wcel 1818  E.wrex 2808  [.wsbc 3327
This theorem is referenced by:  spesbc  3420  indexfi  7848  indexdom  30225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-v 3111  df-sbc 3328
  Copyright terms: Public domain W3C validator