![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rspsbc | Unicode version |
Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 2094 and spsbc 3340. See also rspsbca 3418 and rspcsbela 3853. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
rspsbc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvralsv 3095 | . 2 | |
2 | dfsbcq2 3330 | . . 3 | |
3 | 2 | rspcv 3206 | . 2 |
4 | 1, 3 | syl5bi 217 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 [ wsb 1739
e. wcel 1818 A. wral 2807 [. wsbc 3327 |
This theorem is referenced by: rspsbca 3418 sbcth2 3422 rspcsbela 3853 riota5f 6282 riotass2 6284 fzrevral 11792 fprodcllemf 31591 rspsbc2 33305 truniALT 33312 rspsbc2VD 33655 truniALTVD 33678 trintALTVD 33680 trintALT 33681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-v 3111 df-sbc 3328 |
Copyright terms: Public domain | W3C validator |