![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ruclem2 | Unicode version |
Description: Lemma for ruc 13976. Ordering property for the input to . (Contributed by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
ruc.1 | |
ruc.2 | |
ruclem1.3 | |
ruclem1.4 | |
ruclem1.5 | |
ruclem1.6 | |
ruclem1.7 | |
ruclem2.8 |
Ref | Expression |
---|---|
ruclem2 |
M
,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ruclem1.3 | . . . . 5 | |
2 | 1 | leidd 10144 | . . . 4 |
3 | ruclem1.4 | . . . . . . . . 9 | |
4 | 1, 3 | readdcld 9644 | . . . . . . . 8 |
5 | 4 | rehalfcld 10810 | . . . . . . 7 |
6 | 5, 3 | readdcld 9644 | . . . . . 6 |
7 | 6 | rehalfcld 10810 | . . . . 5 |
8 | ruclem2.8 | . . . . . . 7 | |
9 | avglt1 10801 | . . . . . . . 8 | |
10 | 1, 3, 9 | syl2anc 661 | . . . . . . 7 |
11 | 8, 10 | mpbid 210 | . . . . . 6 |
12 | avglt2 10802 | . . . . . . . . 9 | |
13 | 1, 3, 12 | syl2anc 661 | . . . . . . . 8 |
14 | 8, 13 | mpbid 210 | . . . . . . 7 |
15 | avglt1 10801 | . . . . . . . 8 | |
16 | 5, 3, 15 | syl2anc 661 | . . . . . . 7 |
17 | 14, 16 | mpbid 210 | . . . . . 6 |
18 | 1, 5, 7, 11, 17 | lttrd 9764 | . . . . 5 |
19 | 1, 7, 18 | ltled 9754 | . . . 4 |
20 | breq2 4456 | . . . . 5 | |
21 | breq2 4456 | . . . . 5 | |
22 | 20, 21 | ifboth 3977 | . . . 4 |
23 | 2, 19, 22 | syl2anc 661 | . . 3 |
24 | ruc.1 | . . . . 5 | |
25 | ruc.2 | . . . . 5 | |
26 | ruclem1.5 | . . . . 5 | |
27 | ruclem1.6 | . . . . 5 | |
28 | ruclem1.7 | . . . . 5 | |
29 | 24, 25, 1, 3, 26, 27, 28 | ruclem1 13964 | . . . 4 |
30 | 29 | simp2d 1009 | . . 3 |
31 | 23, 30 | breqtrrd 4478 | . 2 |
32 | iftrue 3947 | . . . . . 6 | |
33 | iftrue 3947 | . . . . . 6 | |
34 | 32, 33 | breq12d 4465 | . . . . 5 |
35 | 11, 34 | syl5ibrcom 222 | . . . 4 |
36 | avglt2 10802 | . . . . . . 7 | |
37 | 5, 3, 36 | syl2anc 661 | . . . . . 6 |
38 | 14, 37 | mpbid 210 | . . . . 5 |
39 | iffalse 3950 | . . . . . 6 | |
40 | iffalse 3950 | . . . . . 6 | |
41 | 39, 40 | breq12d 4465 | . . . . 5 |
42 | 38, 41 | syl5ibrcom 222 | . . . 4 |
43 | 35, 42 | pm2.61d 158 | . . 3 |
44 | 29 | simp3d 1010 | . . 3 |
45 | 43, 30, 44 | 3brtr4d 4482 | . 2 |
46 | 5, 3, 14 | ltled 9754 | . . . 4 |
47 | 3 | leidd 10144 | . . . 4 |
48 | breq1 4455 | . . . . 5 | |
49 | breq1 4455 | . . . . 5 | |
50 | 48, 49 | ifboth 3977 | . . . 4 |
51 | 46, 47, 50 | syl2anc 661 | . . 3 |
52 | 44, 51 | eqbrtrd 4472 | . 2 |
53 | 31, 45, 52 | 3jca 1176 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ w3a 973 = wceq 1395
e. wcel 1818 [_ csb 3434 if cif 3941
<. cop 4035 class class class wbr 4452
X. cxp 5002 --> wf 5589 ` cfv 5593
(class class class)co 6296 e. cmpt2 6298 c1st 6798
c2nd 6799
cr 9512 caddc 9516 clt 9649 cle 9650 cdiv 10231 cn 10561 2 c2 10610 |
This theorem is referenced by: ruclem8 13970 ruclem9 13971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-2 10619 |
Copyright terms: Public domain | W3C validator |