![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ruclem9 | Unicode version |
Description: Lemma for ruc 13976. The first components of the sequence are increasing, and the second components are decreasing. (Contributed by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
ruc.1 | |
ruc.2 | |
ruc.4 | |
ruc.5 | |
ruclem9.6 | |
ruclem9.7 |
Ref | Expression |
---|---|
ruclem9 |
M
,, ,N
,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ruclem9.7 | . 2 | |
2 | fveq2 5871 | . . . . . . 7 | |
3 | 2 | fveq2d 5875 | . . . . . 6 |
4 | 3 | breq2d 4464 | . . . . 5 |
5 | 2 | fveq2d 5875 | . . . . . 6 |
6 | 5 | breq1d 4462 | . . . . 5 |
7 | 4, 6 | anbi12d 710 | . . . 4 |
8 | 7 | imbi2d 316 | . . 3 |
9 | fveq2 5871 | . . . . . . 7 | |
10 | 9 | fveq2d 5875 | . . . . . 6 |
11 | 10 | breq2d 4464 | . . . . 5 |
12 | 9 | fveq2d 5875 | . . . . . 6 |
13 | 12 | breq1d 4462 | . . . . 5 |
14 | 11, 13 | anbi12d 710 | . . . 4 |
15 | 14 | imbi2d 316 | . . 3 |
16 | fveq2 5871 | . . . . . . 7 | |
17 | 16 | fveq2d 5875 | . . . . . 6 |
18 | 17 | breq2d 4464 | . . . . 5 |
19 | 16 | fveq2d 5875 | . . . . . 6 |
20 | 19 | breq1d 4462 | . . . . 5 |
21 | 18, 20 | anbi12d 710 | . . . 4 |
22 | 21 | imbi2d 316 | . . 3 |
23 | fveq2 5871 | . . . . . . 7 | |
24 | 23 | fveq2d 5875 | . . . . . 6 |
25 | 24 | breq2d 4464 | . . . . 5 |
26 | 23 | fveq2d 5875 | . . . . . 6 |
27 | 26 | breq1d 4462 | . . . . 5 |
28 | 25, 27 | anbi12d 710 | . . . 4 |
29 | 28 | imbi2d 316 | . . 3 |
30 | ruc.1 | . . . . . . . . 9 | |
31 | ruc.2 | . . . . . . . . 9 | |
32 | ruc.4 | . . . . . . . . 9 | |
33 | ruc.5 | . . . . . . . . 9 | |
34 | 30, 31, 32, 33 | ruclem6 13968 | . . . . . . . 8 |
35 | ruclem9.6 | . . . . . . . 8 | |
36 | 34, 35 | ffvelrnd 6032 | . . . . . . 7 |
37 | xp1st 6830 | . . . . . . 7 | |
38 | 36, 37 | syl 16 | . . . . . 6 |
39 | 38 | leidd 10144 | . . . . 5 |
40 | xp2nd 6831 | . . . . . . 7 | |
41 | 36, 40 | syl 16 | . . . . . 6 |
42 | 41 | leidd 10144 | . . . . 5 |
43 | 39, 42 | jca 532 | . . . 4 |
44 | 43 | a1i 11 | . . 3 |
45 | 30 | adantr 465 | . . . . . . . . . 10 |
46 | 31 | adantr 465 | . . . . . . . . . 10 |
47 | 34 | adantr 465 | . . . . . . . . . . . 12 |
48 | eluznn0 11180 | . . . . . . . . . . . . 13 | |
49 | 35, 48 | sylan 471 | . . . . . . . . . . . 12 |
50 | 47, 49 | ffvelrnd 6032 | . . . . . . . . . . 11 |
51 | xp1st 6830 | . . . . . . . . . . 11 | |
52 | 50, 51 | syl 16 | . . . . . . . . . 10 |
53 | xp2nd 6831 | . . . . . . . . . . 11 | |
54 | 50, 53 | syl 16 | . . . . . . . . . 10 |
55 | nn0p1nn 10860 | . . . . . . . . . . . 12 | |
56 | 49, 55 | syl 16 | . . . . . . . . . . 11 |
57 | 45, 56 | ffvelrnd 6032 | . . . . . . . . . 10 |
58 | eqid 2457 | . . . . . . . . . 10 | |
59 | eqid 2457 | . . . . . . . . . 10 | |
60 | 30, 31, 32, 33 | ruclem8 13970 | . . . . . . . . . . 11 |
61 | 49, 60 | syldan 470 | . . . . . . . . . 10 |
62 | 45, 46, 52, 54, 57, 58, 59, 61 | ruclem2 13965 | . . . . . . . . 9 |
63 | 62 | simp1d 1008 | . . . . . . . 8 |
64 | 30, 31, 32, 33 | ruclem7 13969 | . . . . . . . . . . 11 |
65 | 49, 64 | syldan 470 | . . . . . . . . . 10 |
66 | 1st2nd2 6837 | . . . . . . . . . . . 12 | |
67 | 50, 66 | syl 16 | . . . . . . . . . . 11 |
68 | 67 | oveq1d 6311 | . . . . . . . . . 10 |
69 | 65, 68 | eqtrd 2498 | . . . . . . . . 9 |
70 | 69 | fveq2d 5875 | . . . . . . . 8 |
71 | 63, 70 | breqtrrd 4478 | . . . . . . 7 |
72 | 38 | adantr 465 | . . . . . . . 8 |
73 | peano2nn0 10861 | . . . . . . . . . . 11 | |
74 | 49, 73 | syl 16 | . . . . . . . . . 10 |
75 | 47, 74 | ffvelrnd 6032 | . . . . . . . . 9 |
76 | xp1st 6830 | . . . . . . . . 9 | |
77 | 75, 76 | syl 16 | . . . . . . . 8 |
78 | letr 9699 | . . . . . . . 8 | |
79 | 72, 52, 77, 78 | syl3anc 1228 | . . . . . . 7 |
80 | 71, 79 | mpan2d 674 | . . . . . 6 |
81 | 69 | fveq2d 5875 | . . . . . . . 8 |
82 | 62 | simp3d 1010 | . . . . . . . 8 |
83 | 81, 82 | eqbrtrd 4472 | . . . . . . 7 |
84 | xp2nd 6831 | . . . . . . . . 9 | |
85 | 75, 84 | syl 16 | . . . . . . . 8 |
86 | 41 | adantr 465 | . . . . . . . 8 |
87 | letr 9699 | . . . . . . . 8 | |
88 | 85, 54, 86, 87 | syl3anc 1228 | . . . . . . 7 |
89 | 83, 88 | mpand 675 | . . . . . 6 |
90 | 80, 89 | anim12d 563 | . . . . 5 |
91 | 90 | expcom 435 | . . . 4 |
92 | 91 | a2d 26 | . . 3 |
93 | 8, 15, 22, 29, 44, 92 | uzind4 11168 | . 2 |
94 | 1, 93 | mpcom 36 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 [_ csb 3434
u. cun 3473 if cif 3941 { csn 4029
<. cop 4035 class class class wbr 4452
X. cxp 5002 --> wf 5589 ` cfv 5593
(class class class)co 6296 e. cmpt2 6298 c1st 6798
c2nd 6799
cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 clt 9649 cle 9650 cdiv 10231 cn 10561 2 c2 10610 cn0 10820
cz 10889 cuz 11110
seq cseq 12107 |
This theorem is referenced by: ruclem10 13972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-seq 12108 |
Copyright terms: Public domain | W3C validator |