![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rzal | Unicode version |
Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
rzal |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 3790 | . . . 4 | |
2 | 1 | necon2bi 2694 | . . 3 |
3 | 2 | pm2.21d 106 | . 2 |
4 | 3 | ralrimiv 2869 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 A. wral 2807 c0 3784 |
This theorem is referenced by: ralidm 3933 rgenz 3935 ralf0 3936 raaan 3937 raaanv 3938 iinrab2 4393 riinrab 4406 reusv2lem2 4654 cnvpo 5550 dffi3 7911 brdom3 8927 dedekind 9765 fimaxre2 10516 efgs1 16753 opnnei 19621 axcontlem12 24278 ubthlem1 25786 nofulllem2 29463 mbfresfi 30061 bddiblnc 30085 blbnd 30283 rrnequiv 30331 upbdrech2 31508 stoweidlem9 31791 fourierdlem31 31920 raaan2 32180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-v 3111 df-dif 3478 df-nul 3785 |
Copyright terms: Public domain | W3C validator |