MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1eq Unicode version

Theorem s1eq 12612
Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1eq

Proof of Theorem s1eq
StepHypRef Expression
1 fveq2 5871 . . . 4
21opeq2d 4224 . . 3
32sneqd 4041 . 2
4 df-s1 12545 . 2
5 df-s1 12545 . 2
63, 4, 53eqtr4g 2523 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  {csn 4029  <.cop 4035   cid 4795  `cfv 5593  0cc0 9513  <"cs1 12537
This theorem is referenced by:  s1eqd  12613  wrdl1s1  12622  wrdind  12702  wrd2ind  12703  ccats1swrdeqrex  12704  reuccats1lem  12705  reuccats1  12706  revs1  12739  vrmdval  16025  frgpup3lem  16795  wwlkn0  24689  vdegp1ci  24986  signstfveq0  28534  mrsubcv  28870  mrsubrn  28873  elmrsubrn  28880  mrsubvrs  28882  mvhval  28894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-iota 5556  df-fv 5601  df-s1 12545
  Copyright terms: Public domain W3C validator