MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1eqd Unicode version

Theorem s1eqd 12613
Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypothesis
Ref Expression
s1eqd.1
Assertion
Ref Expression
s1eqd

Proof of Theorem s1eqd
StepHypRef Expression
1 s1eqd.1 . 2
2 s1eq 12612 . 2
31, 2syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  <"cs1 12537
This theorem is referenced by:  swrds1  12676  swrdlsw  12677  swrdccatwrd  12693  s2eqd  12827  s3eqd  12828  s4eqd  12829  s5eqd  12830  s6eqd  12831  s7eqd  12832  s8eqd  12833  frmdgsum  16030  psgnunilem5  16519  efgredlemc  16763  vrgpval  16785  vrgpinv  16787  frgpup2  16794  frgpup3lem  16795  iwrdsplit  28326  sseqval  28327  sseqf  28331  sseqp1  28334  signsvtn0  28527  mrsubcv  28870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-iota 5556  df-fv 5601  df-s1 12545
  Copyright terms: Public domain W3C validator