![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sadeq | Unicode version |
Description: Any element of a sequence sum only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 9-Sep-2016.) |
Ref | Expression |
---|---|
sadeq.a | |
sadeq.b | |
sadeq.n |
Ref | Expression |
---|---|
sadeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 3707 | . . . . . . . 8 | |
2 | inidm 3706 | . . . . . . . . 9 | |
3 | 2 | ineq2i 3696 | . . . . . . . 8 |
4 | 1, 3 | eqtri 2486 | . . . . . . 7 |
5 | 4 | fveq2i 5874 | . . . . . 6 |
6 | inass 3707 | . . . . . . . 8 | |
7 | 2 | ineq2i 3696 | . . . . . . . 8 |
8 | 6, 7 | eqtri 2486 | . . . . . . 7 |
9 | 8 | fveq2i 5874 | . . . . . 6 |
10 | 5, 9 | oveq12i 6308 | . . . . 5 |
11 | 10 | oveq1i 6306 | . . . 4 |
12 | inss1 3717 | . . . . . 6 | |
13 | sadeq.a | . . . . . 6 | |
14 | 12, 13 | syl5ss 3514 | . . . . 5 |
15 | inss1 3717 | . . . . . 6 | |
16 | sadeq.b | . . . . . 6 | |
17 | 15, 16 | syl5ss 3514 | . . . . 5 |
18 | eqid 2457 | . . . . 5 | |
19 | sadeq.n | . . . . 5 | |
20 | eqid 2457 | . . . . 5 | |
21 | 14, 17, 18, 19, 20 | sadadd3 14111 | . . . 4 |
22 | eqid 2457 | . . . . 5 | |
23 | 13, 16, 22, 19, 20 | sadadd3 14111 | . . . 4 |
24 | 11, 21, 23 | 3eqtr4a 2524 | . . 3 |
25 | inss1 3717 | . . . . . . . 8 | |
26 | sadcl 14112 | . . . . . . . . 9 | |
27 | 14, 17, 26 | syl2anc 661 | . . . . . . . 8 |
28 | 25, 27 | syl5ss 3514 | . . . . . . 7 |
29 | fzofi 12084 | . . . . . . . . 9 | |
30 | 29 | a1i 11 | . . . . . . . 8 |
31 | inss2 3718 | . . . . . . . 8 | |
32 | ssfi 7760 | . . . . . . . 8 | |
33 | 30, 31, 32 | sylancl 662 | . . . . . . 7 |
34 | elfpw 7842 | . . . . . . 7 | |
35 | 28, 33, 34 | sylanbrc 664 | . . . . . 6 |
36 | bitsf1o 14095 | . . . . . . . 8 | |
37 | f1ocnv 5833 | . . . . . . . 8 | |
38 | f1of 5821 | . . . . . . . 8 | |
39 | 36, 37, 38 | mp2b 10 | . . . . . . 7 |
40 | 39 | ffvelrni 6030 | . . . . . 6 |
41 | 35, 40 | syl 16 | . . . . 5 |
42 | 41 | nn0red 10878 | . . . 4 |
43 | 2rp 11254 | . . . . . 6 | |
44 | 43 | a1i 11 | . . . . 5 |
45 | 19 | nn0zd 10992 | . . . . 5 |
46 | 44, 45 | rpexpcld 12333 | . . . 4 |
47 | 41 | nn0ge0d 10880 | . . . 4 |
48 | fvres 5885 | . . . . . . . . 9 | |
49 | 41, 48 | syl 16 | . . . . . . . 8 |
50 | f1ocnvfv2 6183 | . . . . . . . . 9 | |
51 | 36, 35, 50 | sylancr 663 | . . . . . . . 8 |
52 | 49, 51 | eqtr3d 2500 | . . . . . . 7 |
53 | 52, 31 | syl6eqss 3553 | . . . . . 6 |
54 | 41 | nn0zd 10992 | . . . . . . 7 |
55 | bitsfzo 14085 | . . . . . . 7 | |
56 | 54, 19, 55 | syl2anc 661 | . . . . . 6 |
57 | 53, 56 | mpbird 232 | . . . . 5 |
58 | elfzolt2 11837 | . . . . 5 | |
59 | 57, 58 | syl 16 | . . . 4 |
60 | modid 12020 | . . . 4 | |
61 | 42, 46, 47, 59, 60 | syl22anc 1229 | . . 3 |
62 | inss1 3717 | . . . . . . . 8 | |
63 | sadcl 14112 | . . . . . . . . 9 | |
64 | 13, 16, 63 | syl2anc 661 | . . . . . . . 8 |
65 | 62, 64 | syl5ss 3514 | . . . . . . 7 |
66 | inss2 3718 | . . . . . . . 8 | |
67 | ssfi 7760 | . . . . . . . 8 | |
68 | 30, 66, 67 | sylancl 662 | . . . . . . 7 |
69 | elfpw 7842 | . . . . . . 7 | |
70 | 65, 68, 69 | sylanbrc 664 | . . . . . 6 |
71 | 39 | ffvelrni 6030 | . . . . . 6 |
72 | 70, 71 | syl 16 | . . . . 5 |
73 | 72 | nn0red 10878 | . . . 4 |
74 | 72 | nn0ge0d 10880 | . . . 4 |
75 | fvres 5885 | . . . . . . . . 9 | |
76 | 72, 75 | syl 16 | . . . . . . . 8 |
77 | f1ocnvfv2 6183 | . . . . . . . . 9 | |
78 | 36, 70, 77 | sylancr 663 | . . . . . . . 8 |
79 | 76, 78 | eqtr3d 2500 | . . . . . . 7 |
80 | 79, 66 | syl6eqss 3553 | . . . . . 6 |
81 | 72 | nn0zd 10992 | . . . . . . 7 |
82 | bitsfzo 14085 | . . . . . . 7 | |
83 | 81, 19, 82 | syl2anc 661 | . . . . . 6 |
84 | 80, 83 | mpbird 232 | . . . . 5 |
85 | elfzolt2 11837 | . . . . 5 | |
86 | 84, 85 | syl 16 | . . . 4 |
87 | modid 12020 | . . . 4 | |
88 | 73, 46, 74, 86, 87 | syl22anc 1229 | . . 3 |
89 | 24, 61, 88 | 3eqtr3rd 2507 | . 2 |
90 | f1of1 5820 | . . . . 5 | |
91 | 36, 37, 90 | mp2b 10 | . . . 4 |
92 | f1fveq 6170 | . . . 4 | |
93 | 91, 92 | mpan 670 | . . 3 |
94 | 70, 35, 93 | syl2anc 661 | . 2 |
95 | 89, 94 | mpbid 210 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 cadd wcad 1446
e. wcel 1818 i^i cin 3474 C_ wss 3475
c0 3784 if cif 3941 ~P cpw 4012
class class class wbr 4452 e. cmpt 4510
`' ccnv 5003 |` cres 5006 --> wf 5589
-1-1-> wf1 5590
-1-1-onto-> wf1o 5592
` cfv 5593 (class class class)co 6296
e. cmpt2 6298 c1o 7142
c2o 7143
cfn 7536 cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 clt 9649 cle 9650 cmin 9828 2 c2 10610 cn0 10820
cz 10889 crp 11249
cfzo 11824 cmo 11996 seq cseq 12107 cexp 12166 cbits 14069 csad 14070 |
This theorem is referenced by: smuval2 14132 smueqlem 14140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-xor 1364 df-tru 1398 df-fal 1401 df-had 1447 df-cad 1448 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-disj 4423 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-map 7441 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-cda 8569 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 df-sum 13509 df-dvds 13987 df-bits 14072 df-sad 14101 |
Copyright terms: Public domain | W3C validator |