MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb1 Unicode version

Theorem sb1 1742
Description: One direction of a simplified definition of substitution. The converse requires either a dv condition (sb5 2174) or a non-freeness hypothesis (sb5f 2127). (Contributed by NM, 13-May-1993.)
Assertion
Ref Expression
sb1

Proof of Theorem sb1
StepHypRef Expression
1 df-sb 1740 . 2
21simprbi 464 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  E.wex 1612  [wsb 1739
This theorem is referenced by:  spsbe  1743  sb4a  1997  sb4e  1998  sb4  2097  sb6  2173  wl-sb5nae  30007  bj-sb4v  34337  bj-sb6  34350  bj-sb3b  34390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-sb 1740
  Copyright terms: Public domain W3C validator