![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sb2 | Unicode version |
Description: One direction of a simplified definition of substitution. The converse requires either a dv condition (sb6 2173) or a non-freeness hypothesis (sb6f 2126). (Contributed by NM, 13-May-1993.) |
Ref | Expression |
---|---|
sb2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1859 | . 2 | |
2 | equs4 2035 | . 2 | |
3 | df-sb 1740 | . 2 | |
4 | 1, 2, 3 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wal 1393 E. wex 1612 [ wsb 1739 |
This theorem is referenced by: stdpc4 2094 sb3 2096 sb4b 2098 hbsb2 2099 hbsb2a 2101 hbsb2e 2102 equsb1 2107 equsb2 2108 dfsb2 2114 sbequi 2116 sb6f 2126 sbi1 2133 sb6 2173 iota4 5574 wl-lem-moexsb 30017 sbeqal1 31304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-sb 1740 |
Copyright terms: Public domain | W3C validator |