![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sb3an | Unicode version |
Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.) |
Ref | Expression |
---|---|
sb3an |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 975 | . . 3 | |
2 | 1 | sbbii 1746 | . 2 |
3 | sban 2140 | . 2 | |
4 | sban 2140 | . . . 4 | |
5 | 4 | anbi1i 695 | . . 3 |
6 | df-3an 975 | . . 3 | |
7 | 5, 6 | bitr4i 252 | . 2 |
8 | 2, 3, 7 | 3bitri 271 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
/\ w3a 973 [ wsb 1739 |
This theorem is referenced by: sbc3angOLD 3391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-ex 1613 df-nf 1617 df-sb 1740 |
Copyright terms: Public domain | W3C validator |