MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb4b Unicode version

Theorem sb4b 2098
Description: Simplified definition of substitution when variables are distinct. (Contributed by NM, 27-May-1997.)
Assertion
Ref Expression
sb4b

Proof of Theorem sb4b
StepHypRef Expression
1 sb4 2097 . 2
2 sb2 2093 . 2
31, 2impbid1 203 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  A.wal 1393  [wsb 1739
This theorem is referenced by:  sbcom3  2153  sbal1  2204  sbal2  2205  wl-sb6nae  30006  wl-sbalnae  30012  wl-sbcom3  30035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740
  Copyright terms: Public domain W3C validator