MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb5rf Unicode version

Theorem sb5rf 2165
Description: Reversed substitution. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 20-Sep-2018.)
Hypothesis
Ref Expression
sb5rf.1
Assertion
Ref Expression
sb5rf

Proof of Theorem sb5rf
StepHypRef Expression
1 sb5rf.1 . . 3
2 sbequ12r 1993 . . 3
31, 2equsex 2038 . 2
43bicomi 202 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  E.wex 1612  F/wnf 1616  [wsb 1739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740
  Copyright terms: Public domain W3C validator