Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb8 Unicode version

Theorem sb8 2167
 Description: Substitution of variable in universal quantifier. (Contributed by NM, 16-May-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.)
Hypothesis
Ref Expression
sb5rf.1
Assertion
Ref Expression
sb8

Proof of Theorem sb8
StepHypRef Expression
1 sb5rf.1 . 2
21nfs1 2104 . 2
3 sbequ12 1992 . 2
41, 2, 3cbval 2021 1
 Colors of variables: wff setvar class Syntax hints:  <->wb 184  A.wal 1393  F/wnf 1616  [wsb 1739 This theorem is referenced by:  sbhb  2182  sbnf2  2183  sb8eu  2318  sb8euOLD  2319  sb8iota  5563  mo5f  27383  wl-sb8eut  30022  sbcalf  30517  ax11-pm2  34409  bj-nfcf  34492 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740
 Copyright terms: Public domain W3C validator