![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbal1 | Unicode version |
Description: A theorem used in elimination of disjoint variable restriction on and by replacing it with a distinctor . (Contributed by NM, 15-May-1993.) (Proof shortened by Wolf Lammen, 3-Oct-2018.) |
Ref | Expression |
---|---|
sbal1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb4b 2098 | . . . . 5 | |
2 | nfnae 2058 | . . . . . 6 | |
3 | nfeqf2 2041 | . . . . . . 7 | |
4 | 19.21t 1904 | . . . . . . . 8 | |
5 | 4 | bicomd 201 | . . . . . . 7 |
6 | 3, 5 | syl 16 | . . . . . 6 |
7 | 2, 6 | albid 1885 | . . . . 5 |
8 | 1, 7 | sylan9bbr 700 | . . . 4 |
9 | nfnae 2058 | . . . . . . 7 | |
10 | sb4b 2098 | . . . . . . 7 | |
11 | 9, 10 | albid 1885 | . . . . . 6 |
12 | alcom 1845 | . . . . . 6 | |
13 | 11, 12 | syl6bb 261 | . . . . 5 |
14 | 13 | adantl 466 | . . . 4 |
15 | 8, 14 | bitr4d 256 | . . 3 |
16 | 15 | ex 434 | . 2 |
17 | sbequ12 1992 | . . . 4 | |
18 | 17 | sps 1865 | . . 3 |
19 | sbequ12 1992 | . . . . 5 | |
20 | 19 | sps 1865 | . . . 4 |
21 | 20 | dral2 2066 | . . 3 |
22 | 18, 21 | bitr3d 255 | . 2 |
23 | 16, 22 | pm2.61d2 160 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
F/ wnf 1616 [ wsb 1739 |
This theorem is referenced by: sbal 2206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 |
Copyright terms: Public domain | W3C validator |