![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbbid | Unicode version |
Description: Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993.) |
Ref | Expression |
---|---|
sbbid.1 | |
sbbid.2 |
Ref | Expression |
---|---|
sbbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbid.1 | . . 3 | |
2 | sbbid.2 | . . 3 | |
3 | 1, 2 | alrimi 1877 | . 2 |
4 | spsbbi 2143 | . 2 | |
5 | 3, 4 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 F/ wnf 1616 [ wsb 1739 |
This theorem is referenced by: sbcom3 2153 sbco3 2160 sbcom2 2189 sbal 2206 wl-equsb3 30004 wl-sbcom2d-lem1 30009 wl-sbcom3 30035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 |
Copyright terms: Public domain | W3C validator |