MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc2or Unicode version

Theorem sbc2or 3336
Description: The disjunction of two equivalences for class substitution does not require a class existence hypothesis. This theorem tells us that there are only 2 possibilities for [A x] behavior at proper classes, matching the sbc5 3352 (false) and sbc6 3354 (true) conclusions. This is interesting since dfsbcq 3329 and dfsbcq2 3330 (from which it is derived) do not appear to say anything obvious about proper class behavior. Note that this theorem doesn't tell us that it is always one or the other at proper classes; it could "flip" between false (the first disjunct) and true (the second disjunct) as a function of some other variable that or may contain. (Contributed by NM, 11-Oct-2004.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbc2or
Distinct variable group:   ,

Proof of Theorem sbc2or
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3330 . . . 4
2 eqeq2 2472 . . . . . 6
32anbi1d 704 . . . . 5
43exbidv 1714 . . . 4
5 sb5 2174 . . . 4
61, 4, 5vtoclbg 3168 . . 3
76orcd 392 . 2
8 pm5.15 889 . . 3
9 vex 3112 . . . . . . . . . 10
10 eleq1 2529 . . . . . . . . . 10
119, 10mpbii 211 . . . . . . . . 9
1211adantr 465 . . . . . . . 8
1312con3i 135 . . . . . . 7
1413nexdv 1884 . . . . . 6
1511con3i 135 . . . . . . . 8
1615pm2.21d 106 . . . . . . 7
1716alrimiv 1719 . . . . . 6
1814, 172thd 240 . . . . 5
1918bibi2d 318 . . . 4
2019orbi2d 701 . . 3
218, 20mpbii 211 . 2
227, 21pm2.61i 164 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  \/wo 368  /\wa 369  A.wal 1393  =wceq 1395  E.wex 1612  [wsb 1739  e.wcel 1818   cvv 3109  [.wsbc 3327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111  df-sbc 3328
  Copyright terms: Public domain W3C validator