![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbc3angOLD | Unicode version |
Description: Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) Obsolete as of 17-Aug-2018. Use sbc3an 3390 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbc3angOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3330 | . 2 | |
2 | dfsbcq2 3330 | . . 3 | |
3 | dfsbcq2 3330 | . . 3 | |
4 | dfsbcq2 3330 | . . 3 | |
5 | 2, 3, 4 | 3anbi123d 1299 | . 2 |
6 | sb3an 2141 | . 2 | |
7 | 1, 5, 6 | vtoclbg 3168 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ w3a 973 = wceq 1395 [ wsb 1739
e. wcel 1818 [. wsbc 3327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 df-sbc 3328 |
Copyright terms: Public domain | W3C validator |