![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbc3ie | Unicode version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
sbc3ie.1 | |
sbc3ie.2 | |
sbc3ie.3 | |
sbc3ie.4 |
Ref | Expression |
---|---|
sbc3ie |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc3ie.1 | . 2 | |
2 | sbc3ie.2 | . 2 | |
3 | sbc3ie.3 | . . . 4 | |
4 | 3 | a1i 11 | . . 3 |
5 | sbc3ie.4 | . . . 4 | |
6 | 5 | 3expa 1196 | . . 3 |
7 | 4, 6 | sbcied 3364 | . 2 |
8 | 1, 2, 7 | sbc2ie 3403 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 cvv 3109
[. wsbc 3327 |
This theorem is referenced by: isdlat 15823 islmod 17516 isslmd 27745 rmydioph 30956 hdmap1fval 37524 hdmapfval 37557 hgmapfval 37616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 df-sbc 3328 |
Copyright terms: Public domain | W3C validator |