![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbc6 | Unicode version |
Description: An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
Ref | Expression |
---|---|
sbc6.1 |
Ref | Expression |
---|---|
sbc6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc6.1 | . 2 | |
2 | sbc6g 3353 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 = wceq 1395 e. wcel 1818
cvv 3109
[. wsbc 3327 |
This theorem is referenced by: intab 4317 2sbc6g 31322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 df-sbc 3328 |
Copyright terms: Public domain | W3C validator |