![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbc8g | Unicode version |
Description: This is the closest we can get to df-sbc 3328 if we start from dfsbcq 3329 (see its comments) and dfsbcq2 3330. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbc8g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 3329 | . 2 | |
2 | eleq1 2529 | . 2 | |
3 | df-clab 2443 | . . 3 | |
4 | equid 1791 | . . . 4 | |
5 | dfsbcq2 3330 | . . . 4 | |
6 | 4, 5 | ax-mp 5 | . . 3 |
7 | 3, 6 | bitr2i 250 | . 2 |
8 | 1, 2, 7 | vtoclbg 3168 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
[ wsb 1739 e. wcel 1818 { cab 2442
[. wsbc 3327 |
This theorem is referenced by: rusbcALT 31346 bnj984 34010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 df-sbc 3328 |
Copyright terms: Public domain | W3C validator |