MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc8g Unicode version

Theorem sbc8g 3335
Description: This is the closest we can get to df-sbc 3328 if we start from dfsbcq 3329 (see its comments) and dfsbcq2 3330. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbc8g

Proof of Theorem sbc8g
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3329 . 2
2 eleq1 2529 . 2
3 df-clab 2443 . . 3
4 equid 1791 . . . 4
5 dfsbcq2 3330 . . . 4
64, 5ax-mp 5 . . 3
73, 6bitr2i 250 . 2
81, 2, 7vtoclbg 3168 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  [wsb 1739  e.wcel 1818  {cab 2442  [.wsbc 3327
This theorem is referenced by:  rusbcALT  31346  bnj984  34010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111  df-sbc 3328
  Copyright terms: Public domain W3C validator