![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbcabel | Unicode version |
Description: Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005.) |
Ref | Expression |
---|---|
sbcabel.1 |
Ref | Expression |
---|---|
sbcabel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . 2 | |
2 | sbcex2 3381 | . . . 4 | |
3 | sbcan 3370 | . . . . . 6 | |
4 | sbcal 3379 | . . . . . . . . 9 | |
5 | sbcbig 3374 | . . . . . . . . . . 11 | |
6 | sbcg 3401 | . . . . . . . . . . . 12 | |
7 | 6 | bibi1d 319 | . . . . . . . . . . 11 |
8 | 5, 7 | bitrd 253 | . . . . . . . . . 10 |
9 | 8 | albidv 1713 | . . . . . . . . 9 |
10 | 4, 9 | syl5bb 257 | . . . . . . . 8 |
11 | abeq2 2581 | . . . . . . . . 9 | |
12 | 11 | sbcbii 3387 | . . . . . . . 8 |
13 | abeq2 2581 | . . . . . . . 8 | |
14 | 10, 12, 13 | 3bitr4g 288 | . . . . . . 7 |
15 | sbcabel.1 | . . . . . . . . 9 | |
16 | 15 | nfcri 2612 | . . . . . . . 8 |
17 | 16 | sbcgf 3399 | . . . . . . 7 |
18 | 14, 17 | anbi12d 710 | . . . . . 6 |
19 | 3, 18 | syl5bb 257 | . . . . 5 |
20 | 19 | exbidv 1714 | . . . 4 |
21 | 2, 20 | syl5bb 257 | . . 3 |
22 | df-clel 2452 | . . . 4 | |
23 | 22 | sbcbii 3387 | . . 3 |
24 | df-clel 2452 | . . 3 | |
25 | 21, 23, 24 | 3bitr4g 288 | . 2 |
26 | 1, 25 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 e. wcel 1818 { cab 2442
F/_ wnfc 2605
cvv 3109
[. wsbc 3327 |
This theorem is referenced by: csbexg 4584 csbexgOLD 4586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-sbc 3328 |
Copyright terms: Public domain | W3C validator |