Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcal Unicode version

Theorem sbcal 3379
 Description: Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcal
Distinct variable groups:   ,   ,

Proof of Theorem sbcal
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sbcex 3337 . 2
2 sbcex 3337 . . 3
32sps 1865 . 2
4 dfsbcq2 3330 . . 3
5 dfsbcq2 3330 . . . 4
65albidv 1713 . . 3
7 sbal 2206 . . 3
84, 6, 7vtoclbg 3168 . 2
91, 3, 8pm5.21nii 353 1
 Colors of variables: wff setvar class Syntax hints:  <->wb 184  A.wal 1393  =wceq 1395  [wsb 1739  e.wcel 1818   cvv 3109  [.wsbc 3327 This theorem is referenced by:  sbcabel  3416  sbcssg  3940  sbcfung  5616  sbcalf  30517  trsbc  33311  bnj89  33774  bnj538OLD  33797  bnj110  33916  bnj611  33976  bnj1000  33999  bj-sbeq  34468  bj-sbceqgALT  34469 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111  df-sbc 3328
 Copyright terms: Public domain W3C validator