MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcco Unicode version

Theorem sbcco 3350
Description: A composition law for class substitution. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbcco
Distinct variable group:   ,

Proof of Theorem sbcco
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sbcex 3337 . 2
2 sbcex 3337 . 2
3 dfsbcq 3329 . . 3
4 dfsbcq 3329 . . 3
5 sbsbc 3331 . . . . . 6
65sbbii 1746 . . . . 5
7 nfv 1707 . . . . . 6
87sbco2 2158 . . . . 5
9 sbsbc 3331 . . . . 5
106, 8, 93bitr3ri 276 . . . 4
11 sbsbc 3331 . . . 4
1210, 11bitri 249 . . 3
133, 4, 12vtoclbg 3168 . 2
141, 2, 13pm5.21nii 353 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  [wsb 1739  e.wcel 1818   cvv 3109  [.wsbc 3327
This theorem is referenced by:  sbc7  3355  sbccom  3407  sbcralt  3408  csbco  3444  sbccom2  30530  sbccom2f  30531  aomclem6  31005  bnj62  33773  bnj610  33804  bnj976  33836  bnj1468  33904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111  df-sbc 3328
  Copyright terms: Public domain W3C validator