MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccsb Unicode version

Theorem sbccsb 3849
Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbccsb
Distinct variable group:   ,

Proof of Theorem sbccsb
StepHypRef Expression
1 abid 2444 . . 3
21sbcbii 3387 . 2
3 sbcel2 3831 . 2
42, 3bitr3i 251 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  e.wcel 1818  {cab 2442  [.wsbc 3327  [_csb 3434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-fal 1401  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-in 3482  df-ss 3489  df-nul 3785
  Copyright terms: Public domain W3C validator