![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbccsb2gOLD | Unicode version |
Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.) Obsolete as of 18-Aug-2018. Use sbccsb2 3851 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbccsb2gOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid 2444 | . . 3 | |
2 | 1 | sbcbii 3387 | . 2 |
3 | sbcel12gOLD 3824 | . . 3 | |
4 | csbvarg 3848 | . . . 4 | |
5 | 4 | eleq1d 2526 | . . 3 |
6 | 3, 5 | bitrd 253 | . 2 |
7 | 2, 6 | syl5bbr 259 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
e. wcel 1818 { cab 2442 [. wsbc 3327
[_ csb 3434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-sbc 3328 df-csb 3435 |
Copyright terms: Public domain | W3C validator |