![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbcel12gOLD | Unicode version |
Description: Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) Obsolete as of 18-Aug-2018. Use sbcel12 3823 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbcel12gOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3330 | . . 3 | |
2 | dfsbcq2 3330 | . . . . 5 | |
3 | 2 | abbidv 2593 | . . . 4 |
4 | dfsbcq2 3330 | . . . . 5 | |
5 | 4 | abbidv 2593 | . . . 4 |
6 | 3, 5 | eleq12d 2539 | . . 3 |
7 | nfs1v 2181 | . . . . . 6 | |
8 | 7 | nfab 2623 | . . . . 5 |
9 | nfs1v 2181 | . . . . . 6 | |
10 | 9 | nfab 2623 | . . . . 5 |
11 | 8, 10 | nfel 2632 | . . . 4 |
12 | sbab 2604 | . . . . 5 | |
13 | sbab 2604 | . . . . 5 | |
14 | 12, 13 | eleq12d 2539 | . . . 4 |
15 | 11, 14 | sbie 2149 | . . 3 |
16 | 1, 6, 15 | vtoclbg 3168 | . 2 |
17 | df-csb 3435 | . . 3 | |
18 | df-csb 3435 | . . 3 | |
19 | 17, 18 | eleq12i 2536 | . 2 |
20 | 16, 19 | syl6bbr 263 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 [ wsb 1739 e. wcel 1818
{ cab 2442 [. wsbc 3327 [_ csb 3434 |
This theorem is referenced by: sbcel2gOLD 3832 sbccsb2gOLD 3852 csbxpgVD 33694 csbrngVD 33696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-sbc 3328 df-csb 3435 |
Copyright terms: Public domain | W3C validator |