Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel21v Unicode version

Theorem sbcel21v 3395
 Description: Class substitution into a membership relation. One direction of sbcel2gv 3394 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcel21v
Distinct variable group:   ,

Proof of Theorem sbcel21v
StepHypRef Expression
1 sbcex 3337 . 2
2 sbcel2gv 3394 . . 3
32biimpd 207 . 2
41, 3mpcom 36 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  e.wcel 1818   cvv 3109  [.wsbc 3327 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111  df-sbc 3328
 Copyright terms: Public domain W3C validator