![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbceqg | Unicode version |
Description: Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
sbceqg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3330 | . . 3 | |
2 | dfsbcq2 3330 | . . . . 5 | |
3 | 2 | abbidv 2593 | . . . 4 |
4 | dfsbcq2 3330 | . . . . 5 | |
5 | 4 | abbidv 2593 | . . . 4 |
6 | 3, 5 | eqeq12d 2479 | . . 3 |
7 | nfs1v 2181 | . . . . . 6 | |
8 | 7 | nfab 2623 | . . . . 5 |
9 | nfs1v 2181 | . . . . . 6 | |
10 | 9 | nfab 2623 | . . . . 5 |
11 | 8, 10 | nfeq 2630 | . . . 4 |
12 | sbab 2604 | . . . . 5 | |
13 | sbab 2604 | . . . . 5 | |
14 | 12, 13 | eqeq12d 2479 | . . . 4 |
15 | 11, 14 | sbie 2149 | . . 3 |
16 | 1, 6, 15 | vtoclbg 3168 | . 2 |
17 | df-csb 3435 | . . 3 | |
18 | df-csb 3435 | . . 3 | |
19 | 17, 18 | eqeq12i 2477 | . 2 |
20 | 16, 19 | syl6bbr 263 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 [ wsb 1739 e. wcel 1818
{ cab 2442 [. wsbc 3327 [_ csb 3434 |
This theorem is referenced by: sbcne12 3827 sbcne12gOLD 3828 sbceq1g 3830 sbceq2g 3833 sbcfng 5733 swrdspsleq 12673 sbceqi 30513 onfrALTlem5 33314 onfrALTlem4 33315 csbeq2gOLD 33322 csbfv12gALTOLD 33621 csbingVD 33684 onfrALTlem5VD 33685 onfrALTlem4VD 33686 csbeq2gVD 33692 csbsngVD 33693 csbunigVD 33698 csbfv12gALTVD 33699 cdlemk42 36667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-sbc 3328 df-csb 3435 |
Copyright terms: Public domain | W3C validator |