MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcid Unicode version

Theorem sbcid 3344
Description: An identity theorem for substitution. See sbid 1996. (Contributed by Mario Carneiro, 18-Feb-2017.)
Assertion
Ref Expression
sbcid

Proof of Theorem sbcid
StepHypRef Expression
1 sbsbc 3331 . 2
2 sbid 1996 . 2
31, 2bitr3i 251 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  [wsb 1739  [.wsbc 3327
This theorem is referenced by:  csbid  3442  snfil  20365  ex-natded9.26  25140  bnj605  33965  elimhyps  34692  dedths  34693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-sbc 3328
  Copyright terms: Public domain W3C validator