![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbcid | Unicode version |
Description: An identity theorem for substitution. See sbid 1996. (Contributed by Mario Carneiro, 18-Feb-2017.) |
Ref | Expression |
---|---|
sbcid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbsbc 3331 | . 2 | |
2 | sbid 1996 | . 2 | |
3 | 1, 2 | bitr3i 251 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 [ wsb 1739
[. wsbc 3327 |
This theorem is referenced by: csbid 3442 snfil 20365 ex-natded9.26 25140 bnj605 33965 elimhyps 34692 dedths 34693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-sbc 3328 |
Copyright terms: Public domain | W3C validator |