![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbcied | Unicode version |
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
Ref | Expression |
---|---|
sbcied.1 | |
sbcied.2 |
Ref | Expression |
---|---|
sbcied |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcied.1 | . 2 | |
2 | sbcied.2 | . 2 | |
3 | nfv 1707 | . 2 | |
4 | nfvd 1708 | . 2 | |
5 | 1, 2, 3, 4 | sbciedf 3363 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
[. wsbc 3327 |
This theorem is referenced by: sbcied2 3365 sbc2iedv 3404 sbc3ie 3405 sbcralt 3408 euotd 4753 fmptsnd 6093 riota5f 6282 fpwwe2lem12 9040 fpwwe2lem13 9041 sbcie3s 14676 issubc 15204 gsumvalx 15897 dmdprd 17029 dprdval 17034 dprdvalOLD 17036 issrg 17159 issrng 17499 islmhm 17673 isassa 17964 isphl 18663 istmd 20573 istgp 20576 isnlm 21184 isclm 21564 iscph 21617 iscms 21784 limcfval 22276 sbcies 27381 abfmpeld 27492 abfmpel 27493 isomnd 27691 isorng 27789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 df-sbc 3328 |
Copyright terms: Public domain | W3C validator |